Sunday, April 18, 2010

Electron cloud

The electrons in an atom are attracted to the protons in the nucleus by the electromagnetic force. This force binds the electrons inside an electrostatic potential well surrounding the smaller nucleus, which means that an external source of energy is needed in order for the electron to escape. The closer an electron is to the nucleus, the greater the attractive force. Hence electrons bound near the center of the potential well require more energy to escape than those at greater separations.

Electrons, like other particles, have properties of both a particle and a wave. The electron cloud is a region inside the potential well where each electron forms a type of three-dimensional standing wave—a wave form that does not move relative to the nucleus. This behavior is defined by an atomic orbital, a mathematical function that characterises the probability that an electron will appear to be at a particular location when its position is measured.[60] Only a discrete (or quantized) set of these orbitals exist around the nucleus, as other possible wave patterns will rapidly decay into a more stable form.[61] Orbitals can have one or more ring or node structures, and they differ from each other in size, shape and orientation.[62]

Wave functions of the first five atomic orbitals. The three 2p orbitals each display a single angular node that has an orientation and a minimum at the center.

Each atomic orbital corresponds to a particular energy level of the electron. The electron can change its state to a higher energy level by absorbing a photon with sufficient energy to boost it into the new quantum state. Likewise, through spontaneous emission, an electron in a higher energy state can drop to a lower energy state while radiating the excess energy as a photon. These characteristic energy values, defined by the differences in the energies of the quantum states, are responsible for atomic spectral lines.[61]

The amount of energy needed to remove or add an electron—the electron binding energy—is far less than the binding energy of nucleons. For example, it requires only 13.6 eV to strip a ground-state electron from a hydrogen atom,[63] compared to 2.23 million eV for splitting a deuterium nucleus.[64] Atoms are electrically neutral if they have an equal number of protons and electrons. Atoms that have either a deficit or a surplus of electrons are called ions. Electrons that are farthest from the nucleus may be transferred to other nearby atoms or shared between atoms. By this mechanism, atoms are able to bond into molecules and other types of chemical compounds like ionic and covalent network crystals.[65]

The structure of the cloud varies with the number of electrons present in the cloud. There exist a number of different methods of electron counting, such as the octet rule and eighteen electron rule. These tend to be rules of thumb and are not valid across all atoms. Beginning chemistry students are often told the shell structure is simply 2, 8, 8, 8, 8, 8, 8, [...] to make the teaching process easier. The actual numbers of electrons per shell in the larger atoms can be considerably different, such as 2, 8, 18, 32, 50, 72, but this complexity is reserved for the more advanced student.[citation needed]

0 comments:

Post a Comment