Ibn al-Haytham (Alhazen, 965–1040) proposed a particle theory of light in his Book of Optics (1021). He held light rays to be streams of minute energy particles that travel in straight lines at a finite speed.He states in his optics that "the smallest parts of light," as he calls them, "retain only properties that can be treated by geometry and verified by experiment; they lack all sensible qualities except energy."Avicenna (980–1037) also proposed that "the perception of light is due to the emission of some sort of particles by a luminous source".
Pierre Gassendi (1592–1655), an atomist, proposed a particle theory of light which was published posthumously in the 1660s. Isaac Newton studied Gassendi's work at an early age, and preferred his view to Descartes' theory of the plenum. He stated in his Hypothesis of Light of 1675 that light was composed of corpuscles (particles of matter) which were emitted in all directions from a source. One of Newton's arguments against the wave nature of light was that waves were known to bend around obstacles, while light travelled only in straight lines. He did, however, explain the phenomenon of the diffraction of light (which had been observed by Francesco Grimaldi) by allowing that a light particle could create a localised wave in the aether.
Newton's theory could be used to predict the reflection of light, but could only explain refraction by incorrectly assuming that light accelerated upon entering a denser medium because the gravitational pull was greater. Newton published the final version of his theory in his Opticks of 1704. His reputation helped the particle theory of light to hold sway during the 18th century. The particle theory of light led Laplace to argue that a body could be so massive that light could not escape from it. In other words it would become what is now called a black hole. Laplace withdrew his suggestion when the wave theory of light was firmly established. A translation of his essay appears in The large scale structure of space-time, by Stephen Hawking and George F. R. Ellis.
0 comments:
Post a Comment